Transportation Information Center --> Vehicle:
queue warning information
Definitions
queue warning information (Information Flow): Information regarding formed or impending queues (location of the end of queue, estimated duration of the queue, and other descriptions of the queue condition) and recommendations for upstream vehicles including speed reduction, lane change, or diversion recommendations.
Transportation Information Center (Source Physical Object): The 'Transportation Information Center' collects, processes, stores, and disseminates transportation information to system operators and the traveling public. The physical object can play several different roles in an integrated ITS. In one role, the TIC provides a data collection, fusing, and repackaging function, collecting information from transportation system operators and redistributing this information to other system operators in the region and other TICs. In this information redistribution role, the TIC provides a bridge between the various transportation systems that produce the information and the other TICs and their subscribers that use the information. The second role of a TIC is focused on delivery of traveler information to subscribers and the public at large. Information provided includes basic advisories, traffic and road conditions, transit schedule information, yellow pages information, ride matching information, and parking information. The TIC is commonly implemented as a website or a web-based application service, but it represents any traveler information distribution service.
Vehicle (Destination Physical Object): This 'Vehicle' physical object is used to model core capabilities that are common to more than one type of Vehicle. It provides the vehicle-based general sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.
Included In
This Triple is in the following Service Packages:
This triple is associated with the following Functional Objects:
This Triple is described by the following Functional View Data Flows:
This Triple has the following triple relationships:
Relationship | Source | Destination | Flow |
---|---|---|---|
Depends On | Traffic Management Center | Transportation Information Center | road network conditions |
Communication Solutions
- Data for Distribution (TBD) - Apache Kafka over Wireless (44)
- Data for Distribution (TBD) - OMG DDS over Wireless (44)
- Data for Distribution (TBD) - OASIS MQTT over Wireless (50)
- Data for Distribution (TBD) - OASIS AMQP over Wireless (61)
Selected Solution
Solution Description
ITS Application Entity
Development needed |
Click gap icons for more info.
|
||
Mgmt
Apache Zookeeper |
Facilities
Apache Kafka Apache Zookeeper |
Security
IETF RFC 8446 |
|
TransNet
|
|||
Access
|
Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.
Characteristics
Characteristic | Value |
---|---|
Time Context | Recent |
Spatial Context | Local |
Acknowledgement | False |
Cardinality | Broadcast |
Initiator | Source |
Authenticable | True |
Encrypt | False |
Interoperability | Description |
---|---|
National | This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union). |
Security
Information Flow Security | ||||
---|---|---|---|---|
Confidentiality | Integrity | Availability | ||
Rating | Low | Moderate | Low | |
Basis | Intended for public use, but could indicate location of the recipient. Thus LOW and not N/A. | Performance data that is compromised may result in incorrect actions taken by drivers, impacting their mobility and overall mobility throughout the transportation network. | Lack of this flow will have a slight negative impact on potential recipients, but there are other mechanisms to learn of traffic delays. Only in circumstances where queue states directly drive decisions with signficant time impacts would this rise to MODERATE. |
Security Characteristics | Value |
---|---|
Authenticable | True |
Encrypt | False |