Vehicle Service Center --> Vehicle:
vehicle service information

Definitions

vehicle service information (Information Flow): Vehicle problem diagnosis information and available vehicle service options, along with information about how to make a service reservation.

Vehicle Service Center (Source Physical Object): 'Vehicle Service Center' represents vehicle service centers that collect vehicle diagnostic information from vehicles and provide service options for drivers of these vehicles. The physical object also includes centers operated by vehicle manufacturers that can coordinate with connected vehicles to obtain vehicle operating data and provide software or data updates to connected vehicles that they have manufactured.

Vehicle (Destination Physical Object): This 'Vehicle' physical object is used to model core capabilities that are common to more than one type of Vehicle. It provides the vehicle-based general sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.

Included In

This Triple is in the following Service Packages:

This triple is associated with the following Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

(None-Data) - Apache Kafka over Wireless

Solution Description

This solution is used within Canada and the U.S.. It combines standards associated with (None-Data) with those for Apache Kafka over Wireless. The (None-Data) standards include an unspecified set of standards at the upper layers. The Apache Kafka over Wireless standards include lower-layer open source code that supports data distribution of specific types of data over wireless links.

ITS Application Entity
Mind the gapMind the gap

Development needed
Click gap icons for more info.

Mgmt

Apache Zookeeper
Facilities
Mind the gapMind the gapMind the gap

Development needed
Apache Kafka
Apache Zookeeper
Security

IETF RFC 8446
TransNet

IP Alternatives
IETF RFC 9293
Access
Mind the gapMind the gapMind the gap
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context National
Acknowledgement True
Cardinality Unicast
Initiator Source
Authenticable True
Encrypt True


Interoperability Description
National This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union).

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Moderate High Moderate
Basis Vehicle OBE control, configuration and software/firmware update should all be protected from view. A hostile third party could use this information to reverse engineer control/configuration/update processes, and use that information in an attack across a broad swatch of vehicles, which would have severe effects to the connected vehicle environment. Vehicle device control, configuration and update need to be correct or the Vehicle OBE may be misconfigured, which for some applications could have severe safety impacts. Without the ability to locally diagnose, operate, update and configure the Vehicle OBE, the OBE is effectively out of control and would have to be taken out of service. Marked MODERATE and not HIGH however because a vehicle system is presumed to be able to operate without a connection to a backoffice service. For specific instances where this flow is used as part of a local, in-person configuration or maintenance service, would be HIGH.


Security Characteristics Value
Authenticable True
Encrypt True