Transit Vehicle OBE --> Connected Vehicle Roadside Equipment:
vehicle path prediction

Definitions

vehicle path prediction (Information Flow): The predicted future vehicle path of travel. This flow includes an indication of the future positions of the transmitting vehicle that can be used by receiving vehicles to support coordinated driving maneuvers and enhance in-lane and out-of-lane threat classification.

Transit Vehicle OBE (Source Physical Object): The 'Transit Vehicle On-Board Equipment' (OBE) resides in a transit vehicle and provides the sensory, processing, storage, and communications functions necessary to support safe and efficient movement of passengers. The types of transit vehicles containing this physical object include buses, paratransit vehicles, light rail vehicles, other vehicles designed to carry passengers, and supervisory vehicles. It collects ridership levels and supports electronic fare collection. It supports a traffic signal prioritization function that communicates with the roadside physical object to improve on-schedule performance. Automated vehicle location enhances the information available to the transit operator enabling more efficient operations. On-board sensors support transit vehicle maintenance. The physical object supports on-board security and safety monitoring. This monitoring includes transit user or vehicle operator activated alarms (silent or audible), as well as surveillance and sensor equipment. The surveillance equipment includes video (e.g. CCTV cameras), audio systems and/or event recorder systems. It also furnishes travelers with real-time travel information, continuously updated schedules, transfer options, routes, and fares. A separate 'Vehicle OBE' physical object supports the general vehicle safety and driver information capabilities that apply to all vehicles, including transit vehicles. The Transit Vehicle OBE supplements these general capabilities with capabilities that are specific to transit vehicles.

Connected Vehicle Roadside Equipment (Destination Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices (i.e., Roadside Units (RSUs)) equipped with short range wireless (SRW) communications technology, as well as any other supporting equipment that leverage the RSU and are not described by other objects (e.g., a local roadside processor). CVRSE are used to send messages to, and receive messages from, nearby vehicles and personal devices equipped with compatible communications technology. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.

Included In

This Triple is in the following Service Packages:

This triple is associated with the following Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

US: SAE LTE-V2X BSM - LTE-V2X WSMP

Solution Description

This solution is used within Canada and the U.S.. It combines standards associated with US: SAE LTE-V2X BSM with those for V-X: LTE-V2X WSMP. The US: SAE LTE-V2X BSM standards include upper-layer standards required to implement V2V safety information flows over C-V2X. The V-X: LTE-V2X WSMP standards include lower-layer standards that support connectionless, near constant, ultra-low latency vehicle-to-any communications using the WAVE Short Messaging Protocol (WSMP) over 3GPP C-V2X in the 5.9GHz spectrum.

ITS Application Entity
Mind the gapMind the gap

SAE J2735
SAE J3161/1
Click gap icons for more info.

Mgmt

SAE J3161
3GPP 24.301
3GPP 36.331
Facilities
Mind the gap

SAE J2735
Security
Mind the gap
TransNet

IEEE 1609.3
Access
Mind the gapMind the gap
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Adjacent
Acknowledgement False
Cardinality Broadcast
Initiator Source
Authenticable True
Encrypt False


Interoperability Description
National This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union).

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Not Applicable High Moderate
Basis This is intended for broadcast. Path prediction is intended for collision avoidance applications, which have high integrity requirements to avoid potentially catastrophic consequences. Path prediction is intended for collision avoidance applications, which ideally would have HIGH availability requirements, but given the constraints of the wireless medium are reduced to MODERATE.


Security Characteristics Value
Authenticable True
Encrypt False